
Evolutionary Design and Simulation of a Tube Crawling Inspection Robot

Michael Craft and Dr. Tom Howsman

Dynamic Concepts, Inc.
Madison, AL 35758

e-mail: mcrafl!_h)dynanlic-concepts.com

Dan O'Neil

NASA, Marshall Space Flight Center
ltuntsville, AL 35812

e-mail: dan.oneilldmsfc.nasa.gov

Keywords
Evolutionary robotics, robot simulation, genetic algorithm

Abstract

The Space Robotics Assembly Team Simulation (SpaceRATS) is an expansive concept that will
hopefully lead to a space flight demonstration of a robotic team cooperatively assembling a system from

its constitutive parts. A primary objective of the SpaceRATS project is to develop a generalized
evolutionary design approach lbr multiple classes of robots. The portion of the overall SpaceRats

program associated with the evolutionary design and simulation of an inspection robot's morphology is

the subject of this paper. The vast majority of this effort has concentrated on the use and modification of
Darwin2K, a robotic design and simulation software package, to analyze the design of a tube crawling

robot. This robot is designed for carrying out inspection duties in relatively inaccessible locations within

a liquid rocket engine similar to the SSME. A preliminary design of the tube crawler robot was
completed, and the mechanical dynamics of the system were simulated. An evolutionary approach to

optimizing a few parameters of the system was utilized, resulting in a more optimum design.

1.0 Introduction

Efforts to develop a generalized

approach using evolutionary methodologies for

the design of specific types of robots have been
jointly pursued by Marshall Space Flight Center
and Dynamic Concepts, Inc. The specific efforts

documented in this paper concentrate on using a

genetic algorithm in concert with dynamic
simulation to optimize the structural design, or

morphology, of a robot. The mission of the
robot was to crawl through a small tube

independent of the direction of gravity.

Potentially, the robot was designed to carry out
inspection duties in relatively inaccessible
locations within a rocket engine similar to the

Space Shuttle Main Engine (SSME). The vast
majority of the efforts documented herein have

been applied to the use and modification of

Darwin2K, a robotic design software toolkit, to
analyze the design of the robot. A preliminary

design of the tube crawler robot has been
completed, and the mechanical dynamics of the

system have been simulated. An evolutionary
approach to optimizing a few parameters of the

design has been utilized, resulting in a more
optimum design. Details of the Darwin2K

software and the tube crawling robot design are

presented in this paper.

2.0 Software for the Evolutionary Design of
Robotic Hardware

An investigation into the availability of
software for the design of robotic morphologies

was conducted early in the contract period of
performance. While there are several research

centers active in the application of evolutionary

strategies to the design of robot morphology [1]
[2], there is very little software available to the
public at this time. The available software

consists primarily of general purpose
evolutionary algorithms, and typically lacks the

important specializations and underlying physics

models required for robotic morphology design.
A notable exception to the general

purpose software is the Darwin2K software
package [3]. Originally authored by Dr. Chris

Leger as part of his Ph.D. program at Carnegie
Mellon University, development of Darwin2K is

now being performed by a small number of

researchersand is hostedon the opensource
developmentsite SourceForge.net.DCI has
decidedto utilizethe Darwin2Ksoftwareand
has installedthe softwareon severalof its
workstationLinuxPC's. Theinstallationof the
softwareis not a trivial matter,and requires
somefamiliaritywith Unix,OpenGL,Xforms,
andPerl.

basedoperatingsystems,suchasIrix or Linux.
It shouldbenotedthatDarwin2K is not an "end

user" software product. In order to implement
any type of complex robotic design, the user is

required to either modify or add to the
Darwin2K source code. Further information

about Darwin2K may be tbund at
www.darwin2k.com.

3.0 Darwin2K Overview

Darwin2K is an open source software
suite of tools for robot simulation and design

optimization. Darwin2K allows a user to define

a robot using a simple tree structure, draw from

(or add to) a library ofpre-defined robotic joints,
define the robot's terrain and performance
metrics, and simulate the kinematics and

dynamics of the robot. An evolutionary design

algorithm (genetic algorithm) is implemented to
allow the user to optimize the robot kinematics,

dynamics, components, and controller

parameters. Darwin2K is a series of object-

oriented applications created in C++ and is
intended to be compiled and executed on Unix-

4.0 Design and Simulation using Darwin2K
A significant effort has been made

towards using the Darwin2K software suite to

develop the design of a robot capable of

crawling through a tube independent of the

direction of gravity. In order to quickly develop
a prototype robot, an existing robot design was

modified to allow for the robot's legs to

simultaneously make contact with an upper and
lower surface. A diagram of this robot

configuration is shown in Figure 1. While this
design appears to meet the mission

requirenaents, it results in a complex

configuration with 24 separate joints. In order
fbr this robot to be effective, a controller would

Figure 1: Modified Darwin2K Hexbot on Random Terrain

haveto bedevelopedto coordinatethecomplex
motionof therobot'sjoints.

A different,lesscomplicateddesignof a
robotto performthemissionhasbeenpursued.
This robot design, called "UmbrellaBot"
throughoutthe remainderof this document,
consistsof only threecontrollablejoints. Two
of the joints are prismatic beams that control a
mechanism that extends and retracts a series of

legs. The third joint is another prismatic beam
connected between the other two joints in

sequence, thus allowing the robot's body to

expand and contract like an inchworm. A
diagram presenting the preliminary design of the
robot, referenced as "UmbrellaBot" in this

report, is shown in Figure 2.
Unfortunately, the leg design shown in

Figure 2 results in a series ol" "closed chain"
mechanisms, or mechanisms in which the

dynamics calculations loop back upon
themselves. In its unmodified lbrm, Darwin2K

cannot simulate the dynamics of such

mechanisms. The changes made to Darwin2K
to implement the UmbrellaBot configuration are

discussed in the following sections.

5.0 Darwin2K Modifications

In Darwin2K, robots configurations are
"assembled" using a map to connect the series of

robotic joints (e.g., a prismatic beam), links
(e.g., a hollow tube), bases, and end effectors to

tbrm a single design. Obviously, Darwin2K

implements a finite number of types of
components stored in a library. In order to build

certain specific configurations, it is necessary to

add required components, controllers,
mechanisms, or other classes to the Darwin2K
source code. Additional mechanical links and

joints were added to the Darwin2K component
library in order to construct the UmbrellaBot.

Perhaps the most difficult aspect of this project
was the implementation of the closed-chain

mechanisms discussed previously. A
customized evaluator class was derived to

implement the various constraints that result in
the umbrella leg mechanisms. A diagram

depicting the evaluator constraints implemented
to form the leg mechanisms is presented in

Figure 3. Finally, a controller was developed to
coordinate the movement of the UmbrellaBot.

,,/

Aft

Um bMechanism

jj _

J

/f.J

Base ,
x

xN

\,

,\
\x

X\

%
/

f
Center Prismatic Joint --_

/

/

/

/
/
!

/
/

Forward

UmbMechanism

.f _I_II_./'_ '

Figure 2: UmbrellaBot Conceptual Design

" CubeLmk

Hollow Tube r - " --

," _ i'" . S_trtote toe¢

_. SimpleToolJoiniHir_je _ Hc_low Tube

.,-- .:-;,: ,_o,.tH,,_..,

/

Prisrr_lic // \\

am --- CubeLm

Figure 3: Umbrella Leg Mechanism

6.0 Simulation and Evaluation Procedure

In order to evakmte a robot

configuration using Darwin2K, a specific
sequence of actions must be fbllowed in order to

ensure that the program will properly analyze

the correct configuration. This sequence of
actions is discussed in the following sections,

along with examples of the input required for

each step and examples of graphics generated by
the Darwin2K suite of tools.

6.1 Configuration Display
When building a prototype in

Darwin2K, it is often useful to check the robot

configuration to ensure the joints and links are

being constructed as intended. The program

"displayCfgGL" is designed to accomplish this
task. The program displayCfgGL graphically

renders the robot configuration and allows the
user to view the specified configuration from

virtually any angle, check the motion of the
robotic joints, and inspect the dynamic chains

formed by Darwin2K. The displayCfgGL

program is activated by typing "di splayCfgGL

con fig. 1" at the prompt of a Unix console
window, where the file "config.l" is the

configuration file of the desired robot.

6.2 Simulation

Before a robot configuration can be

analyzed and refined by the Darwin2K

population manager, it is necessary to simulate
the dynamics of the robot's baseline

configuration to ensure thai the controller
functions properly, that the robot does not

collide with any objects, and that the robot can
achieve its goals. There are two dynamic

simulation programs included in the most recent
version of Darwin2K: the "d2kSimGL"

simulation and the "evStandaloneGL"

simulation. Both programs require a
configuration file (config.l), an evaluation

parameter file (eval.p), and a terrain definition
file (terrain.dat). However, the evStandaloneGL

program also requires a population manager
parameter file (pm.p), which defines the robot's
performance metrics. The d2kSimGL program

is activated by typing "d2kSimGL eval.p

config, l" at the prompt of a Unix console
window, while evStandaloneGL is activated by

typing "evStandaloneGL pm.p eval .p

config, i" at the prornpt of a Unix console

window. Both programs graphically render the
simulated dynamics of the robot. A diagram

presenting an example of the graphics generated
by the Darwin2K dynamic simulations is shown

in Figure 4.

6.3 Population Manager

The Darwin2K population manager

program, "pmStandalone," is used to generate
many different robot configurations based on the

baseline configuration, evaluate each
configuration based on the performance metrics

defined m the population manager parameter file
(pro.p), and determine the optimal robot

configuration for each performance metric. The

evolutionary analysis features of Darwin2K are
contained in the population manager. Unlike the

d2kSimGL and evStandaloneGL programs, the
pmStandalone program does not generate any

graphic images of the robot dynamics. The

pmStandalone program is activated by typing

"pmSta:.: _alone pro. g_ eval . p" at the prompt
of a Unix console window.

Figure 4: Darwin2K Simulation of UmbrellaBot Design

7.0 Results

The Darwin2K population manager was
used to optimize a portion of the configuration

of the UmbrellaBot. Many analytical iterations
were necessary in order to properly configure

Darwin2K to perform the optimization. The

input files required for the Darwin2K population
manager include the robot configuration file, the

evaluation parameter file, the performance

metric parameter file, and the terrain definition
file. The task given to the robot was to move
one unit of length down the long axis of the

tube, which generally required one complete
motion cycle of the robot. The robot

configuration was measured in five categories of
performance: 1.) completion of the task, 2.) the

mass of robot, 3.) the time required to complete

the task, 4.) the power consumed by the robot,
and 5.) the deflection of the robot's links. The

program manager was allowed to run through 10
generations with 10 population members each,

for a total of 100 configurations. The population
manager was allowed to vary (within limits) the

length of the center prismatic joint and the

length of the long "hollowTube" portion of the
robot's legs. Three "optimal" robot
configurations have been generated by the

Darwin2K program manager. A listing of the
population manager results is presented in

Figure 5.

Logged p pulation.

] <)0

opt im_J_ tgs

eva!to ,: rs _t

l(_ ¸, !i¸ _.:lu_l_l_J_ _ask(:_I_Lpl_'_i,:_M_l<:

IUU ! il .,-42L32 [_._wer}4_,_ _

best _:: .o5o

10o _4 :I._}i_l_2S linkDetle_tionMe_ic

best ,:, :_l

I_eilera_ __ i0o config_ratiol_s, m_x = i00

Done.

Figure 5 - Output Log of the Darwin2K
pmStandalone Program

The population manager calculated that, for the

time perli)rmance metric, the best length of the
center prismatic joint is 1.1875, the length of the

front leg hollowTubelink is 1.4125,and the
lengthof therearleghollowTubeis 1.405(units
arenotprovidedsincetherobot'sconfiguration
wasdefinedrelativeonly to the tube). It is
highly unlikely that this solutionwouldhave
beenreachedusingclassicalanalysismethods.
Providedwithmoreresources,otherparameters
could be optimized, including the robot's

controller gains or the number of legs for robot
locomotion (or both). One limitation of
Darwin2K involved the presentation and

interpretation of results generated by the

population manager. In its current, native mode,
Darwin2K does not keep a running tab of the

performance indeces of the robot configurations.
This leads to many natural questions regarding
the effectiveness of the population manager.

8.0 Summary
A shareware software toolkit developed

for robot simulation and optimization,

Darwin2K, has been used to investigate and

refine the conceptual design of a robot. The

design of a tube crawling robot is presented. A
brief overview of Darwin2K is discussed, and
the modifications made to Darwin2K in order to

perform the analyses are documented. The

evolutionary analysis tools provided by
Darwin2K have been used to optimize portions

of the robot's configuration for certain

performance metrics.
The Darwin2K software toolkit has

great potential for automating robotic design

synthesis and optimization. However, the
relative difficulty in using Darwin2K in its

present form probably precludes its widespread
adoption until several "ease of use" issues are
addressed. However, the primary author of the

software is presently working to address these
issues.

The tube crawler robot whose design

was simulated and ultimately refined using
Darwin2K has been developed to the point that a

more complete analysis is now feasible.

Additional design studies will be required to
determine appropriate sensors, power supplies,

and useability constraints.

References

[1] Lipson, H. and Pollack, .1., "Automated
design and manufacture of robotic

lifeforms," Nature, Vol 406, Macmillan

Magazines, Ltd, August 31, 2000.

[2] Perkins, S. and Hayes, G., "Robot Shaping -

Principles, Methods and Architectures,"
Workshop on Learning in Robots and
Animals, AISB '96, University of Sussex,

UK, April 1-2, 1996.

[3] Leger, C. "Darwin2K: An Evolutionary
Approach to Automated Design for
Robotics," Kluwer Academic Publishers,
2000.

